跳转至

案例介绍⚓︎

随着NLP(Natural Language Processing)技术的发展,NLP的应用场景正在逐渐扩大,这大大地方便了我们的生活。其中,TTS(Text To Speech)的应用在生活中极为广泛。

在过去,许多城市的公交及地铁报站的语音皆为人工录制,线路的临时变更等各种因素导致不得不多次重复录制语音内容,但是应用TTS技术之后,我们可以轻易地生成语音,而无需重新录制语音内容。再者,如今各类手机厂商、智能家居系统、车载系统等的语音助手也在广泛应用该技术,这让你的手机、音响和你的车可以开口“说话”了。曾经科幻电影才有的情景,突然就在不知不觉间成为了现实。

对于个人而言,TTS也极大地改善了我们的生活。在过去,对于视障人士而言,阅读是一件极其困难的事情,因为他们需要首先先学习盲文,并且只能购买资源十分有限的盲文书籍来阅读。而且,由于盲文的表达能力不及自然语言,阅读盲文的速度也不及正常阅读的速度,这进一步影响了他们的阅读体验。然而,利用TTS技术,我们可以轻易让计算机朗读现有的电子版书籍,从而帮助他们实现无障碍“听书”。再者,对于工作繁忙的上班族,他们也可以利用平时在路上通勤的时间听书,让通勤不再枯燥。

由于现在TTS的技术已经较为成熟,微软就提供了完整丰富的TTS-api,让我们无需关注TTS内部复杂的实现,这极大地降低了企业或个人开展TTS相关业务的难度。在此案例中,我们将学习如何利用微软的TTS-api快速构建一个文本朗读的桌面应用程序,从而实现“听书”。

先修知识⚓︎

无需先修知识。

我们在案例中使用的微软的认知服务(Cognitive Services)下的语音服务,可以让我们在不了解TTS知识的情况下,快速实现TTS功能,完成桌面应用的开发。

什么是Azure认知服务?

Azure 认知服务是 API、SDK 和服务,可帮助开发人员生成智能应用程序,而无需具备直接的 AI 或数据科学技能或知识。 开发人员使用 Azure 认知服务能够轻松地将认知功能添加到其应用程序中。 Azure 认知服务的目标是帮助开发人员创建可以看、听、说、理解甚至开始推理的应用程序。 Azure 认知服务中的服务目录可分为五大主要支柱类别:视觉、语音、语言、Web 搜索和决策。

了解更多

案例核心知识点⚓︎

该案例涉及了以下几个知识点:

  1. TTS-api的申请和使用
  2. TTS应用的构建
  3. TTS功能的实现

上述内容将会在应用的构建中涉及。

虽然我们的案例并没有涉及TTS核心技术的开发,但是在开始之前,我们还是有必要简单了解TTS的基本原理。TTS的实现涉及了极其繁多和复杂的步骤,在看完之后,你或许能够体会到TTS核心技术开发的困难所在,从而理解利用一个TTS-api究竟能给开发者带来多大的便利。

TTS基本原理⚓︎

传统常见模型⚓︎

TTS的常见模型通常将文本转语音任务分解成两个部分:文本分析(Text Analysis)语音合成(Speech Synthesis)。先是对输入的文本进行分析,提取出用于生成语音的信息,再利用特定的算法合成出语音。

1. 文本分析⚓︎

该部分主要是对输入文本进行分析,提取出语音合成必需的信息,如音素、语调等。

通常有以下几个步骤: * 利用语句切分算法,将输入的文本切分成独立的语句 * 对于每个句子,我们需要进一步分析词语,将句子分词成连续的Token序列 * 分析Token,由于Token可能包含数字、日期等非自然语言,因此我们需要使用一定的规则将这些非自然语言转换成自然语言 * 进行基础的语音语调分析,如找出语句中的重点部分等

其中,上述的每一个步骤都有各自的算法,对于不同的任务可能有着对应不同的实现,由于篇幅有限,在此不再展开,感兴趣的同学可以查阅《Text-to-Speech Synthesis》

2. 语音合成⚓︎

该部分的工作是利用文本分析提供的信息,合成出相应的语音。由此可见,如果文本分析提取的信息不够准确,势必会导致生成的语音效果不佳。除此之外,不同的语音合成算法也会对生成的语音的效果有影响。

目前,语音的合成主要有以下几类方法:

  1. 波形拼接法

    在合成之前,我们会预先录制大量语料,预先录制的语音可以通过波形片段的形式储存在数据库。在合成阶段,我们需要把我们分析出来的词语编码为音素,再通过查询预先录制的语音数据库,找出尽可能匹配的声音波形片段。当选出特定的波形片段序列后,我们可以使用信号处理的方式将它们拼接在一起,形成连续的声波语音。通常来说,拼接法生成的语音最为自然。常见的方法有:单元选择合成(Unit Selection Synthesis)、双音合成(Diphone Synthesis)、特定领域合成(Domain-specific Synthesis)。

  2. 参数生成法

    参数生成法是通过分析语音中的参数如基频、发声、音长等,建立声学模型,再使用不同的参数组合转化为声波。参数生成法在生成语音时不会像波形拼接法一样,使用预先录制的语音,而是通过参数和模型生成一段语音。当然,利用这种方法也需要预录制语音,但是需要录制的内容会少于波形拼接法,且录制下来的内容主要用于学习参数,不直接用于生成内容。常见的方法有:共振峰合成(Formant Synthesis)、隐马尔可夫模型合成(Hidden Markov Model Synthesis)等。

深度学习方法⚓︎

除了传统的常见模型以外,如今也有不少团队尝试使用深度学习来实现TTS。深度学习的方法通常不会明显地划分文本分析和语音合成部分,而是利用了深度神经网络(Deep Neural Networks),通过特定的网络结构和训练大量的文本和语音数据,实现端到端的文本转语音。例如,Google的Tacotron、DeepMind的WaveNet等。

其他模型⚓︎

1. 信号到信号模型(Signal-to-Signal model)⚓︎

在此模型里,处理过程可以看作直接将文本信号转换为语音信号,而不再显式地划分文本分析和语音合成的阶段。例如,上述的深度学习方法。其中,谷歌的深度学习模型Tacotron便是实现了端到端的TTS转换。

2. 流水线模型(Pipelined model)⚓︎

熟悉编译原理的同学应该会对此模型比较熟悉。流水线模型将任务划分了不同的模块,每个模块负责特定的任务,上个模块的输出将作为当前的输入,当前的输出也将作为下个模块的输入。许多Signal-to-Signal的模型便是使用了流水线模型来实现的。

我们在这里只提到了部分模型,更多的模型请查阅《Text-to-Speech Synthesis》

环境与工具⚓︎

操作系统:Windows 10

开发环境:Visual Studio 2019

开发语言:C#

注:在安装Visual Studio 2019时,请确保已勾选“.NET 桌面开发”。

推荐学习时长⚓︎

该案例推荐学习时长为:1.5小时

应用的构建⚓︎

该案例利用了Azure的TTS-api服务构建了一个文本朗读的桌面应用程序,实现了中文文本转语音,并能够保存生成的音频文件。

构建分为以下几个步骤: 1. 申请TTS-api 2. 构建窗体界面 3. 调用api实现TTS

申请TTS-api⚓︎

Azure提供了30天的免费使用版,如果需要注册免费试用,请转到试用认知服务或参考 B04-定制化-语言理解应用案例-智能家居 中的申请试用语音转文本

  1. 完成注册或登录Azure账户之后,请按照在Azure中创建语音资源的指引申请TTS-api。

  2. 完成TTS-api的申请后,登录Azure主页,点击“最新资源”下的“TTS-api”。

  3. 进入“TTS-api”后可以查看自己的**Key**和**终结点**,你需要记下它们,因为这将在后续的开发中使用。

构建窗体界面⚓︎

  1. 打开Visual Studio 2019,选择“创建新项目”。

    选择语言为“C#”,选择“Windows窗体应用(.NET Framework)”。

    修改项目名称为“TTS_Demo”,点击“创建”。

  2. 点击左侧“工具箱”,选择“公共控件”,选择“Button”。

    将“button”拖至右侧界面中适当位置,调整大小至合适尺寸。

    右侧属性框可以设置按钮属性。将Text设置成“保存”,Font设置成“微软雅黑, 10pt”。

    将Design中的Name设置成“saveButton”。

  3. 按上述方法依次创建按钮“播放”、“生成”,并放置到适当的位置,将其属性框内Design中的Name分别设置成“playButton”、“transferButton”。

  4. 在“工具箱”中选择“TextBox”,拖至右侧界面中适当位置。在属性框内的Behavior中的Multiline设置为“True”。在界面中调整TextBox大小至合适尺寸。

  5. 在“工具箱”中选择“Label”,拖至界面适当位置,设置属性框中的Text属性为“文本转语音服务”,并设置适当字体。同理,新建“Label”并修改Text属性为“请在下方输入内容”,设置适当字体及颜色。

至此,窗体界面的搭建就完成了。

调用api实现TTS⚓︎

注:如对api的使用有任何疑问可以查阅文本转语音 REST API

  1. 选择右侧“解决方案资源管理器”中的“TTS_Demo”,右键选择“添加”->“新建项”。

    选择“类”,名称为“Authentication.cs”,点击“添加”。

  2. Authentication.cs 文件中,引用如下命名空间。

    using System.Net.Http;
    using System.IO;
    

    添加如下代码。

    namespace TTS_Demo
    {
        public class Authentication
        {
            private string subscriptionKey;
            private string tokenFetchUri;
    
            public Authentication(string tokenFetchUri, string subscriptionKey)
            {
                if (string.IsNullOrWhiteSpace(tokenFetchUri))
                {
                    throw new ArgumentNullException(nameof(tokenFetchUri));
                }
                if (string.IsNullOrWhiteSpace(subscriptionKey))
                {
                    throw new ArgumentNullException(nameof(subscriptionKey));
                }
                this.tokenFetchUri = tokenFetchUri;
                this.subscriptionKey = subscriptionKey;
            }
    
            public async Task<string> FetchTokenAsync()
            {
                using (var client = new HttpClient())
                {
                    client.DefaultRequestHeaders.Add("Ocp-Apim-Subscription-Key", this.subscriptionKey);
                    UriBuilder uriBuilder = new UriBuilder(this.tokenFetchUri);
    
                    var result = await client.PostAsync(uriBuilder.Uri.AbsoluteUri, null).ConfigureAwait(false);
                    return await result.Content.ReadAsStringAsync().ConfigureAwait(false);
                }
            }
    
        }
    }
    
  3. 同理,新建类文件 TTSApi.cs,并添加如下代码。

    namespace TTS_Demo
    {      
        class TTSApi
        {
            //语言配置信息
            string locale = "zh-CN";
            string voiceName = "Microsoft Server Speech Text to Speech Voice (zh-CN, HuihuiRUS)";
    
            string accessToken;
            Authentication auth = new Authentication("https://westus.api.cognitive.microsoft.com/sts/v1.0/issuetoken", "REPLACE_WITH_YOUR_KEY");
            string host = "https://westus.tts.speech.microsoft.com/cognitiveservices/v1";
    
            //转换文本并保存
            public async Task textToSpeechAsync(string text, string savePath)
            {
                try
                {
                    accessToken = await auth.FetchTokenAsync().ConfigureAwait(false);
                }
                catch (Exception ex)
                {
                    Console.WriteLine(ex);
                }
    
                string body = "<speak version='1.0' xmlns='https://www.w3.org/2001/10/synthesis' xml:lang='"+locale+"'>"
                +"<voice name='"+voiceName+"'>" + text + "</voice></speak>";
    
                using (var client = new HttpClient())
                {
                    using (var request = new HttpRequestMessage())
                    {
                        // Set the HTTP method
                        request.Method = HttpMethod.Post;
                        // Construct the URI
                        request.RequestUri = new Uri(host);
                        // Set the content type header
                        request.Content = new StringContent(body, Encoding.UTF8, "application/ssml+xml");
                        // Set additional header, such as Authorization and User-Agent
                        request.Headers.Add("Authorization", "Bearer " + accessToken);
                        request.Headers.Add("Connection", "Keep-Alive");
                        // Update your resource name
                        request.Headers.Add("User-Agent", "YOUR_RESOURCE_NAME");
                        request.Headers.Add("X-Microsoft-OutputFormat", "riff-24khz-16bit-mono-pcm");
                        // Create a request
                        Console.WriteLine("Calling the TTS service. Please wait... \n");
                        using (var response = await client.SendAsync(request).ConfigureAwait(false))
                        {
                            response.EnsureSuccessStatusCode();
                            // Asynchronously read the response
                            using (var dataStream = await response.Content.ReadAsStreamAsync().ConfigureAwait(false))
                            {
                                using (var fileStream = new FileStream(savePath, FileMode.Create, FileAccess.Write, FileShare.Write))
                                {
                                    await dataStream.CopyToAsync(fileStream).ConfigureAwait(false);
                                    fileStream.Close();
                                }
                            }
                        }
                    }
                }
            }
        }
    }
    

    其中,需要特别注意以下代码片段:

            string locale = "zh-CN";
            string voiceName = "Microsoft Server Speech Text to Speech Voice (zh-CN, HuihuiRUS)";
    
            string accessToken;
            Authentication auth = new Authentication("https://westus.api.cognitive.microsoft.com/sts/v1.0/issuetoken", "REPLACE_WITH_YOUR_KEY"); //替换为你的终结点和Key
            string host = "https://westus.tts.speech.microsoft.com/cognitiveservices/v1";
    
  4. 上述Authentication的初始化中,需要替换你在TTS-api中分配的终结点和Key。

  5. 上述的localevoiceName允许用户更改不同的语言及发音。具体可选值可以查阅标准语音

    以中文为例,我们这里选择了“zh-CN”的“HuiHuiRUS”。 因此我们根据查表内容,将localevoiceName变量设置成对应值。其中,voiceName可以选择“完全服务名称映射”或“短语音名称”。

  1. Form1.cs 中,添加如下代码至Form1类。

    string tempFile = "temp.wav"; //临时文件存储路径
    TTSApi tts = new TTSApi(); 
    
  2. Form1.cs[设计] 界面中双击“生成”按钮,会自动生成函数transferButton_Click,该函数绑定了“生成”按钮的点击事件,当用户点击“生成”按钮时会自动调用该函数。

    完成此函数代码。

    private async void transferButton_Click(object sender, EventArgs e)
        {
           string text = textBox1.Text; //获取用户输入
    
            if (text.Length > 0)
            {
                await tts.textToSpeechAsync(text, tempFile);        
            }
        }
    
  3. 同理,双击“播放”按钮,完成playButton_Click函数代码。

    private void playButton_Click(object sender, EventArgs e)
        {
            SoundPlayer playSound = new SoundPlayer(tempFile);
            playSound.Play();
        }
    
  4. 双击“保存”按钮,完成saveButton_Click函数代码。

    private void saveButton_Click(object sender, EventArgs e)
        {
            string filePath = "";
            //取前10个字符作为文件名
            string fileName = (textBox1.Text.Length < 10) ? textBox1.Text : textBox1.Text.Substring(0, 10);
    
            SaveFileDialog saveFile = new SaveFileDialog();
            saveFile.FileName = fileName;
            saveFile.Filter = "音频文件 (*.wav) | *.wav"; 
            saveFile.RestoreDirectory = true; //保存并显示上次打开的目录
    
            if (saveFile.ShowDialog() == DialogResult.OK)
            {
                filePath = saveFile.FileName.ToString(); 
    
                if (File.Exists(tempFile))
                {
                    File.Copy(tempFile, filePath, true);
                }
                else
                {
                    Console.WriteLine("音频文件不存在");
                }
            }
        }
    

至此,我们就构建好了整个窗体应用。按F5即可运行程序。

将待朗读的文章复制到文本框,点击“生成”按钮,等待片刻即可生成对应的语音,你可以直接保存生成的音频文件,以便自己使用或分享给家人朋友。

在教程中,我们省略了部分细节,更多内容可以查看源代码

作业和挑战⚓︎

1. 程序复现⚓︎

按照上述的教程,复现一遍文本朗读的桌面应用程序,要求实现输入文本后能够生成语音并保存到本地。

2. 增加从文件读取文本信息的功能⚓︎

当前的程序需要手动输入或复制内容到文本框,再点击“生成”。但是,当我们需要让计算机朗读长文章时,手动复制内容会十分地麻烦。那么,是否能增加一个功能,从文本文件中读取内容到文本框呢?

可参考如下交互方式来实现。

  1. 点击按钮“打开文件”

  2. 选择文本文件

  3. 根据选择的文件自动加载

注:我们在源代码中已实现了该功能,可以参考源代码完成该作业。

参考阅读⚓︎

  1. 《Text-to-Speech Synthesis》, Paul Taylor, University of Cambridge
  2. Text-to-speech quickstart: Get started with speech synthesis (C#)